Neeko: Model Hijacking Attacks Against
Generative Adversarial Networks

Junjie Chu, Yugeng Liu, Xinlei He, Michael Backes, Fellow, IEEE, Yang Zhang, Member, IEEE, Ahmed Salem

Abstract—Generative models have garnered significant interest
in the realm of machine learning. Yet, producing high-quality
generative models is not only costly but is also increasingly
subject to regulatory constraints. Their resource-heavy training
often necessitates collaboration between various stakeholders, es-
pecially data providers. Within such collaborative environments,
a new threat known as model hijacking attacks has surfaced. In
such attacks, adversaries can tamper with the training process to
embed a hidden, potentially malicious task. This method could
enable attackers to train/hijack high-end models at minimal costs
or even sidestep regulations. In this paper, we extend the scope
of the model hijacking from typical classifiers to one of the
most important generative model architectures, i.e., Generative
Adversarial Networks (GANs). More concretely, we introduce the
first model hijacking attack tailored for GANs, namely Neeko.
We propose different approaches for implementing the Neeko,
including a basic image scaling attack and our novel U-Net-
based Disguiser. Successful execution of the Neeko allows a
compromised GAN to generate authentic-looking images from
its original distribution, but when downscaled, these images are
visually changed to be from the hijacking dataset distribution.
Through experiments on different image benchmark datasets, we
demonstrate the efficacy and stealthiness of our attack. We also
explore various defense strategies and find that Neeko is covert
and challenging to detect. The implications of a successful Neeko
pose security and accountability risks associated with training
public GANs on potentially malicious or illegal datasets and
raising concerns about evading regulations aimed at addressing
issues like deepfakes and synthetic content.

Index Terms—Data poisoning, GANs, generative models, ad-
versarial attacks, model hijacking.

I. INTRODUCTION

While GANs hold immense promise, their training pro-
cess presents inherent vulnerabilities. The acquisition of vast
amounts of data and substantial computational power offers
adversaries an attack surface to exploit. A novel attack, known
as the model hijacking attack [1]], [2]], capitalizes on this vul-
nerability. By subtly poisoning the training dataset, adversaries
can implement an additional, often malicious, hijacking task
in the target model.

Junjie Chu, Yugeng Liu, Michael Backes, and Yang Zhang are with the
CISPA Helmholtz Center for Information Security, Saarland Informatics Cam-
pus, 66123 Saarbrucken, Germany. E-mail: junjie.chu, yugeng.liu, director,
zhang@cispa.de

Xinlei He is with the Hong Kong University of Science and Technology
(Guangzhou), No.1 Du Xue Rd, Nansha District, 511453, Guangzhou, China.
E-mail: xinleihe @hkust-gz.edu.cn

Ahmed Salem is with the Microsoft Security Response Center (MSRC),
21 Station Rd, Cambridge CB1 2FB, United Kingdom. E-mail: ahm-
salem @microsoft.com

A. Our Contribution

In this paper, we introduce the first model hijacking attack
against GANs, namely Neeko. Neeko is a training time attack
and adopts the same threat model as data poisoning attacks
and previous model hijacking attacks [1]-[4]. Concretely,
the adversary conducts data poisoning to repurpose a target
GAN designed for a hijackee image generation task (original
task) to be able to complete a hijacking image generation
task (the adversary’s task). The hijacked GAN attacked by
Neeko is capable of seamlessly generating synthetic images
from both the original and hijacking datasets’ distributions.
To maintain the covert nature of data poisoning during the
training phase, Neeko needs to preserve the utility of the target
GAN in its original image generation task while ensuring that
camouflaged training samples (used to poison the training set)
are visually highly similar to clean training samples.
Motivation: The adversary can hijack a target model to
perform an unintended image generation task by using Neeko,
without the model’s owner noticing. This poses accountability
risks for the model owner, as it could lead to allegations
that their model is providing illegal or unethical services. For
example, an adversary could hijack a benign GAN, initially
designed for generating facial images, to produce synthetic
pornography pictures. In short, through this attack, an adver-
sary can hijack a publicly available GAN (especially those
high-quality and expensive GANs), leading to the GAN pro-
viding illegal or unethical services, unintentionally implicating
the hijacked GAN’s owner.

Neeko also poses the risk of parasitic computing. The

adversary could exploit a publicly accessible GAN for their
own applications, bypassing the need to train and host their
own GAN:Ss, thus saving on the associated costs. For instance,
training a StyleGAN v3 at 10242 resolution costs approx-
imately $2,391 [5], and deploying and hosting a GAN on
Google Cloud in Europe incurs a minimum cost of $1.375
per hour [6].
Methodology: The objective of the Neeko is two-fold: Firstly,
to allow a GAN to execute the adversary’s hijacking agenda
seamlessly, and secondly, to ensure it retains its initial func-
tionality. Furthermore, the hijacking process must remain
undetectable.

We initiate Neeko using an image scaling method via
quadratic programming (QP), embedding smaller “hijacking”
images within larger “original” ones. The camouflaged im-
ages, visually similar to the original, reveal the hijacking
images upon downscaling. This technique is used to create
a camouflaged dataset for training the target GAN, allowing

it to learn the original task explicitly and learn hijacking
tasks implicitly at the same time. The compromised GAN
could then produce images from both the original and the
camouflaged dataset’s distributions. Despite its effectiveness,
the QP-based Neeko is time-consuming; processing 36,000
images takes about 4,985 minutes on an X10DRG-K80 server
setup. To improve efficiency, we introduce the Disguiser, a U-
Net-based model inspired by diffusion model advancements.
This model processes hijacking and original samples to output
camouflaged images more efficiently than QP. However, cam-
ouflaged images from both QP and Disguiser are susceptible
to image transformations, a known issue with image scaling
attacks. To counter this, we enhance Neeko’s robustness by
incorporating a decoder trained alongside the Disguiser to
withstand image transformations, ensuring the produced im-
ages retain their intended appearance after downscaling despite
such modifications. This approach significantly bolsters Neeko
against image transformation vulnerabilities.

Evaluation: To assess Neeko, extensive tests were performed
using diverse datasets for the original tasks, including medical
(NIH Chest X-ray 14), human facial (Celeba, FFHQ),
and for hijacking tasks, cartoon avatars (Konachan, Anime)
and numerical digits (MNIST). The evaluation focuses on
the attack’s stealthiness (similarity between the camouflaged
and original images), efficiency (time consumption), and the
hijacked GAN’s utility on both tasks.

Neeko demonstrates impressive results across these criteria.
For instance, using MNIST to hijack a StyleGAN v3 trained
on CelebA, both QP and Disguiser methods produce highly
stealthy camouflaged images, as reflected by high PSNR val-
ues (> 25 dB). The Disguiser significantly cut attack time by
over 90% compared to QP. For example, when using MNIST
to hijack CelebA, Neeko achieves the FID score of 4.99,
which is only a minor increase of 1.36 compared to training a
GAN solely on the Celeba images, showing that the hijacked
GAN maintains high utility. Furthermore, incorporating a
decoder with Neeko further enhanced image robustness against
transformations like translations or mirroring. Defense testing
reveals Neeko’s covert nature, posing detection challenges for
even knowledgeable defenders, highlighting its stealth and
difficulty to detect.

In summary, we make the following contributions:

o We propose the first and the only model hijacking attack
against GANs and thus extend model hijacking attacks to
the domain of generative models.

e« We propose a new approach to implementing model
hijacking attacks, specifically through image scaling at-
tacks. Additionally, we present an innovative U-Net-based
Disguiser, improving the efficiency of image scaling
attacks.

o Our comprehensive empirical experiments reveal the ef-
ficacy of our proposed attack methods, including the
extension to make resulting images more robust against
image transformations.

Implications: Our work reveals that Neeko successfully hi-
jacks target GANSs to generate unanticipated synthetic hijack-
ing images, highlighting significant concerns. Firstly, account-
ability becomes a major challenge as hijacked GANs might

TABLE I: The definitions of different dataset terms used in
the model hijacking attack against GANSs.

Dataset Term | Definition

Original Dataset | The training set of the target GAN’s original task.

The dataset from the same distribution as the target

Hijackee Dataset ‘GAN’s training dataset.

Hijacking Dataset | The training set of the adversary’s hijacking task.

being

Camouflaged Dataset ‘ The modified hijackin%lij dataset after

stealthily embedded in a hijackee dataset.

The dataset the model will be trained on, i.e., the
concatenation of the camouflaged and the original
datasets.

Poisoned Dataset

create unauthorized or illegal images, raising legal and ethical
issues. Secondly, parasitic computing occurs, with adversaries
merely poisoning the GAN’s training set, thereby exploiting
the hijacked GAN for their purposes while the owner incurs
the training and maintenance costs.

II. PRELIMINARIES
A. Image Scaling Attack

Image scaling attacks [7]], [8]] are training time attacks that
target the preprocessing phase of machine learning workflows.
These attacks cleverly alter input images so that when they
undergo the preprocessing steps, such as downscaling, their
appearance is drastically changed. This enables adversaries to
embed malicious images within seemingly benign target ones
discreetly.

In this work, we leverage established image scaling attacks
that use quadratic programming to craft camouflaged images
to hijack target GANs. Furthermore, we introduce extensions
to the attack, addressing two primary limitations of the conven-
tional image scaling attack: its vulnerability to minor image
transformations, which can drastically distort the downscaled
image, and its computational inefficiency inherent in the use
of quadratic programming.

B. Model Hijacking Attack

The model hijacking attack [1]], [2] is another training
time attack wherein adversaries manipulate a target model’s
training dataset to embed an auxiliary and possibly malicious
task. In this context, the original task of the target model
is termed the hijackee task, while the adversary’s added
task is labeled the hijacking task. To carry out the model
hijacking attack, first, the hijacking dataset is camouflaged,
enhancing the stealthiness of the attack. To this end, an
encoder-decoder model is utilized for generating a camou-
flaged dataset. This—camouflaged—dataset visually mirrors the
hijackee dataset yet incorporates the features of the hijacking
dataset. The camouflaged data is then used to poison the
target model’s training, allowing it to perform its original and
hijacking tasks simultaneously. Following the definition in [1]],
we summarize the different referred datasets in for
clarity.

The technique in [[1] only targets the classifiers, and thus,
merely concealing the hijacking samples’ certain features

in the hijacked samples’ latent codes is enough to hijack
the classifiers. However, for generative models, the synthetic
images they output need to be recognizable to human vision.
This implies that merely manipulating features in the latent
space is insufficient for hijacking GANs or other generative
models. Thus, the previous model hijacking technique could
not work in the domain of generative models. For instance, if
an adversary were to utilize this method in [[1]], the hijacked
GANs would be restricted to generating fake hijacked images
with synthetic features of the hijacking data in the latent
space (difficult to recognize in human vision), which is also
extremely difficult to transform into fake hijacking images.
The technique in [2] was exclusively focused on the natural
language processing (NLP) field, making their methodologies
unsuitable for direct application in the field of GANs.

In this work, we broaden the scope of the model hijacking
attack, previously only applied to image classifiers [[1] and
NLP domain classification tasks [2]], to encompass generative
models, specifically GANs. Given a hijackee image, human
vision can only recognize its pixels and is unable to discern its
features in the latent space. Therefore, the key to our approach
lies in manipulating the pixels of the hijackee image rather
than the features in its latent space. Concretely, we introduce
a novel method for executing the model hijacking attack
against GANs by using image scaling attacks to manipulate the
pixels instead of the features. Manipulation at the pixel level
demands higher performance from the Disguiser compared to
manipulating features in the latent space. Thus, we propose
different models and extensions to enhance the efficiency and
robustness of the model hijacking and image scaling attacks,
including the U-Net-based Disguiser.

C. Threat Model

Our approach adopts a very classical threat model, which is
the same as the previous data poisoning attacks and model
hijacking attacks [1]]-[4]], assuming no prior knowledge about
the target GAN and only the ability to poison its training set.

We assume the presence of a hijackee dataset in which the
hijacking dataset is embedded. Importantly, our approach does
not rely on specific assumptions about the scaling methods
used during the training process of GANs. After successfully
hijacking a GAN using Neeko, the adversary can easily obtain
the hijacking synthetic images by down-sampling the camou-
flaged synthetic images with corresponding scaling methods.
Note that not all synthetic images can be downscaled to re-
semble the hijacking ones, as some will appear as downscaled
versions of the original images. Finally, the success criteria of
Neeko align with other hijacking attacks, emphasizing stealth-
iness in execution, satisfactory performance in the hijacking
task, and preserving the utility of the hijackee task.

III. METHODOLOGY
A. General Attack Pipeline

To hijack the target GAN, the adversary first selects a hijack-
ing dataset to implement in the target GAN. They also obtain
a hijackee dataset to embed the hijacking dataset, enhancing
the stealthiness of the Neeko. The hijackee dataset should

o Training” .
Dataset

+Hijackee
. Dataset -

: Dy * Camoufiaged: * || IIE.’
H & B :; Dataset :: Normal Synthetic Images
‘(e Lereenes . s D R .
i = . pisguiser . " WS@ ! Hijacked
o [ES : GAN : 3
B 3 4 Train N -
Hijacking: : . . ml : B J
Dataset . . i D . S N
Dh -/ i ‘] B e § g FANNED)'S

Camouflaged Synthetic Images
Fig. 1: An overview of Neeko using Disguiser. Neeko can
stealthily poison the training dataset of a target GAN using
banned images from an adversary, thereby causing the GAN
to generate synthetic images that conform to the distribution
of banned images.

Bujdwes-umog

obey the similar distribution of the original training dataset
of the target GAN or even be part of the original dataset.
The hijacking dataset is then camouflaged within the hijackee
dataset, creating a camouflaged dataset. This camouflaged
dataset is then concatenated with the clean original dataset
to create a poisoned dataset. Once the training of the target
GAN is completed, the target GAN is hijacked.

The hijacked GAN could generate two kinds of synthetic
images, including clean synthetic images and camouflaged
synthetic images. The adversary can obtain hijacking synthetic
images by downsizing the camouflaged synthetic images gen-
erated by the hijacked GAN.

B. Naive Approach

Directly blending the hijacking dataset into the training
dataset of the target GAN is a naive approach to the Neeko;
however, this approach is fraught with significant limitations.
Primarily, the simplistic nature of directly injecting the hi-
jacking dataset into the training process renders the attack
highly transparent and, consequently, easily identifiable. Given
that generating tasks typically require more training data
(manifested as data poisoning rates in model hijacking attacks)
compared to classification tasks, this drawback becomes even
more pronounced. This easily detectable characteristic persists
both during the training phase and in the generation of
synthetic data, as both the training samples and the resultant
generated synthetic images will exhibit distinct characteristics
that deviate markedly from the original training data.

Furthermore, blending the hijacking dataset with the original
training set without any form of preprocessing or transforma-
tion may introduce structural perturbations into the combined
dataset. These perturbations not only compromise the integrity
of the data distribution but also pose risks to the stability of
the GAN training process, potentially leading to convergence
anomalies. Therefore, this naive method of model hijacking
attack is weak both in terms of stealth and effectiveness, ne-
cessitating more advanced techniques for a successful attack.

C. Neeko Using Quadratic Programming

To overcome the limitations of the naive approach, we
employ the typical image scaling attack [7]], [8] to embed the
hijacking images into the hijackee dataset.

In the typical image scaling attack, the adversary seeks a
minimal perturbation A of the hijackee sample S, such that
the downscaling S(-) of the camouflaged sample C = A+ S
produces an output similar to the hijacking sample 7'. Goals
are summarized as the following optimization:

min(||A]3), s.t|S(S+A) = T|lw <e¢

Additionally, each pixel value of C' needs to remain within
the fixed range (e.g., [0,255] for 8-bit images). Among these
constraints, all variables are known except for A and . A
represents the desired output, while ¢ is the predetermined
threshold. This problem can be solved with quadratic program-
ming (QP) [8]. When successful, the adversary can obtain a
camouflaged image C' that bears a resemblance to the hijackee
sample but matches the hijacking sample after downscaling
operations.

While this methodology ensures a high degree of visual
similarity between the original and camouflaged datasets,
thereby enhancing the stealthiness of the adversarial attack,
it is not without flaws. The most salient drawback lies in
the computational overhead required to execute this approach.
Specifically, the generation of a camouflaged dataset using
this technique imposes a considerable time burden, requiring
a staggering about 4,985 minutes to process a set of 36,000
images. This long processing time constitutes a significant hin-
drance for potential adversaries, particularly those operating
under time-sensitive conditions. Additionally, the method lacks
adaptability in scenarios where new hijacking data becomes
available. When new hijacking data is obtained, the embedding
process needs to be repeated, further extending the attack
duration.

D. Neeko Using Disguiser

To address the limitations of using quadratic programming

(QP) for camouflaging the hijacking dataset and improve the
efficiency of the Neeko, we propose a novel U-Net-based
model, namely Disguiser, to replace the QP-based image
scaling attack. Inspired by recent advancements in diffusion
models [9]-[11], the Disguiser utilizes a U-Net architecture to
efficiently camouflage the hijacking dataset using the hijackee
dataset.
Overview: We present the overview of Neeko using Disguiser
in In the initial phase, the adversary focuses on
training a Disguiser. This Disguiser takes images from both
the hijackee dataset D; and hijacking dataset D, as two
inputs. It is designed to subtly modify the hijackee images
by embedding pixels from the smaller hijacking images into
them. The output is a camouflaged image that, when viewed
at high resolution, remains visually indistinguishable from
the original hijackee image. However, when the camouflaged
image undergoes down-sampling, it has a visual similarity to
the hijacking sample.

After producing a sufficient number of camouflaged images
with the Disguiser, the adversary compiles these into a cam-
ouflaged dataset, denoted as Dc. This dataset is then merged
with the original dataset, Do, to craft a poisoned training set
to poison the training of the target GAN. Once the GAN

Hijackee-resolution '
visual loss 1
I
I

‘hijackee I I \ xL'umm{ﬂugﬂl 1
~— e - ! 1 f~mem = -
v ! 1 .
| 1 Scaling
@ 1 method
S [| ~
‘ R 1 - 1 4 R
1 I \ Disguiser 1 I
(gamwed) .. 00 T o----=- 1 (BANNED)
ey T
X,.. .. b . camouflaged _
\ hijacking v Hijacking-resolution \ (down-sampled) J

visual loss

Fig. 2: The training process of the Disguiser. The adversary
concatenates the hijacking image and hijackee image together
and feeds them into the Disguiser. Then the Disguiser outputs
a camouflaged image with the hijacking image embedded.
The loss function of the Disguiser is composed of hijacking-
resolution visual 1oss (Lpjacking) and hijackee-resolution visual
loss (‘Chlfjackee)‘

is trained on this poisoned dataset, it becomes successfully
hijacked.

The hijacked GAN exhibits the ability to generate two
unique kinds of synthetic images. The first kind consists
of clean synthetic images that closely mirror the original
and hijackee datasets distributions. The second kind involves
camouflaged synthetic images. Although they closely match
the hijackee dataset in high resolution, their visual appearance
changes to align more with the hijacking dataset distribution
when downscaled.

We now discuss each component of this attack in detail.
Disguiser (My): The Disguiser is a U-Net-based model
designed to integrate images from the hijacking dataset and
the hijackee dataset. It takes two images as input: one from
the hijacking dataset (Tpjjacking ~ Dhijacking) and the other from
the hijackee dataset (Zpjjackee ~ Dhijackee). These images are
concatenated, resulting in a single input with six channels.
To handle differing dimensions, an upscaling function F,,(-)
is used to match the size of the hijacking dataset. The con-
catenated image is then passed through the Disguiser, which
scales it down to a camouflaged image Tcumoufiagea With three
channels. The goal is for Tcamouflagea to visually resemble the
hijackee image while exhibiting similarity to the hijacking
image when downscaling.

The U-Net architecture’s interpolation capabilities make it
more effective in reproducing intricate details while incorpo-
rating relevant information from both datasets, compared to a
simple encoder-decoder model used in previous works [[1]].
Hijacking-resolution Visual Loss (Lpjjacking): Similarly, to
ensure visual similarity between the downscaled output of the
Disguiser and the hijacking sample, we utilize the hijacking-
resolution visual loss. This loss is calculated by measuring the
L1 distance between the hijacking samples and the downscaled
version of the Disguiser’s output (S (xmmouﬂaggd)):

‘Cht"/‘ucking = Hs[xcamouﬂaged] - xhijacking”l

Hijackee-resolution Visual Loss (Lpjjackec): To ensure visual
resemblance between the output of the Disguiser (Zcamoufiaged)

and the hijackee sample, we use the hijackee-resolution visual
loss. This loss is also computed using the L1 distance metric:

£hiiac'kee = ||xcamuuﬂaged - xhljackee“l

Disguiser Training: We present the training process in
To train the Disguiser, we employ a weighted combi-
nation of two visual loss components: the hijacking-resolution
visual loss and the hijackee-resolution visual loss:

ES = AEhijackee + (]- - A)Ehijacking

Here, the parameter A controls the weight assigned to each
loss term, determining their relative importance in the overall
optimization objective. During training, in each epoch, random
pairs of samples are created by pairing images from the
hijacking dataset with those from the hijackee dataset. This
random pairing strategy ensures the generalization of the
Disguiser. To recap, prior to pairing, the hijacking samples are
upsampled to match the dimensions of the hijackee samples.
The upsampled hijacking sample is then concatenated with
the hijackee sample, forming the input for the Disguiser. The
output of the Disguiser, along with its corresponding hijackee
and hijacking samples, are used to compute the L.

It is important to note that the loss of the Disguiser is

independent of the target model, making it applicable to
various settings. It can be used as an image scaling attack
without the need for additional training or as a camouflager
in other model hijacking attacks, as discussed in previous
research [1]], [2]].
Neeko Execution: After training the Disguiser, the adversary
uses it to create a camouflaged dataset by camouflaging the
hijacking dataset with the hijackee dataset. This camouflaged
dataset is then used to poison the training dataset of the
target GAN, resulting in a hijacked GAN. The adversary can
query the hijacked GAN to obtain synthetic images resembling
samples from the hijackee dataset or the original datasets.

To obtain hijacking fake images, the adversary downscales
the generated images. However, since the GAN is trained
on both clean and camouflaged datasets, the generated fake
images consist of a mixture of clean fake images and clean
hijacked data. As a result, not all downscaled fake images
align with the hijacking dataset distribution.

E. Extension to the Neeko Using Disguiser

In our examination of Neeko, we observe that the output
camouflaged images—whether generated via a QP-based im-
age scaling attack or through a Disguiser—are vulnerable to
image manipulations. Minor transformations like a slight pixel
shift can neutralize the attack’s effectiveness, preventing the
conversion of camouflaged images into hijacking images.

Thus, we propose an approach, namely the Robust Neeko,
to improve the resilience of the camouflaged images against
pixel position modifications.

In this approach, we introduce a decoder to replace the
conventional downscaling function during the training phase of
the Disguiser, as the decoder could extract the truly effective
pixels in an area instead of only processing pixels at fixed
positions like conventional downscaling methods. The decoder

@, Clean GAN FID
B4 Original FID
60 EmO Stealth FID
Hijacking FID

32574985 —i— Stealth Baseline
PSNR
30.0 K2 Time (min)

¥ 3 5

=)

PSNR (dB)
®
=
Attack Time (min)

~100 ~101

Fig. 3: Quantitative results of Neeko with different scaling
and attack methods: the hijacking dataset is Konachan 322
and the hijackee dataset is CelebA 2562 (size: 120k, 30%
camouflaged). Methods outside the bracket are attack methods,
and those inside are the corresponding scaling methods.

AN Ao et a6
I A R T

2562

2

]

& [.
QP U-Net My U-Net My U-Net My
(Nearest) (Nearest) (Bilinear) (Bicubic)

Fig. 4: Samples of camouflaged synthetic images output
by hijacked GANs with different attack methods and scal-
ing methods: the hijacking dataset and hijackee dataset are
Konachan 322 and CelebA 2562, respectively; the methods
outside and inside the bracket are the attack methods and the
corresponding scaling methods, respectively.

is not pre-trained and needs to be trained together with the
Disguiser.

Moreover, an advanced adversary can use such a decoder
instead of a basic downscaling method to enhance stealthiness.
This makes the attack more covert, as only with access to the
decoder can the hijacked fake images be retrieved.

IV. EVALUATION
A. Evaluation Settings

Datasets: The Hijackee datasets and original datasets
used are derived from diverse benchmark datasets, includ-
ing Celeba [12], FFHQ [13]], and NIH Chest X-ray
14 [14], for face and medical images. For the hijack-
ing datasets, we use MNIST [15] for handwritten digits,
Konachan Avatar [16], and Anime Faces [17] for
anime faces. Details are introduced in The
training sizes are 70k for FFHQ and 120k for CelebA and
NIH Chest X-ray 14. The poisoning rate is set to be
30%.

Models: We use the cutting-edge StyleGAN v3 as our target
GAN model for the main experiments. GANSs are trained from
scratch with the basic configurations. In the main experiment,
the Disguiser architecture is based on U-Net with ResNet 18
encoder and decoder layers, taking inputs with 6 input chan-
nels and producing output images with 3 channels. We also
add a 4-layer autoencoder-based Disguiser, which has the same
architecture as the camouflager [[1] but different loss functions,
to compare. In the extension, the decoder is composed of two

convolution layers. Its input size is the original resolution,
while the output size is the hijacking resolution. The weight
A is set to 0.5.

Metrics: To evaluate the Neeko, we apply the peak signal-
to-noise ratio (PSNR) to measure the similarity between
camouflaged and original samples, with PSNR values above
25 dB indicating strong similarity, as suggested by previous
research [|8]. We calculate the mean and standard deviation
of PSNR across the entire training dataset to assess Neeko’s
stealthiness by evaluating artifact visibility in camouflaged
samples. For attack efficiency, we measure the time to generate
the camouflaged dataset.

We use the Fréchet Inception Distance (FID) metric for eval-

uating hijacked GANs’ performance [18]], despite its known
sensitivity to scaling [19], due to the absence of a better
alternative. To distinguish between clean and camouflaged fake
images produced by the hijacked GANs, we use a classifier
with a slightly adjusted score threshold of 0.60 for greater ac-
curacy, reducing the impact of misclassification. We compute
three types of FID scores for hijacked GANS: original FID
(clean training images vs. synthetic images), stealth FID (cam-
ouflaged and clean training images vs. synthetic images), and
hijacking FID (down-sampled camouflaged training images vs.
down-sampled camouflaged synthetic images). These metrics
provide insights into the utility, stealthiness, and efficacy of
the hijacked GANs during their training phase.
Other Settings: We follow the recommended scaling factor
a = 8.0 from image scaling attacks [7], [8]], with hijacking
datasets at resolutions of 162 and 322, corresponding to the
original resolutions of 1282 and 2562. Such a scaling factor
is considered to be stealthy, and the corresponding artifacts in
the camouflaged images are considered to be invisible. We use
the scaling methods in PyTorch by default. Scaling is done
using the nearest neighbor method in the main experiments.
We report the compute resources we use in in the
appendix.

B. Neeko Using Quadratic Programming

We randomly pair 30% of the hijackee dataset samples
with hijacking samples to initiate the classic image scaling
attack on the target GAN. These pairs are used to generate
the camouflaged dataset as described in The
time required for this process and the peak signal-to-noise ratio
(PSNR) of the camouflaged samples are reported in [Figure 3al

v Clean GAN FID
@ Original FID
60 cmn Stealth FID

32.5 ~== Stealth Baseline

Hijacking FID

g300F ¥ 3
275

&
25.0

Attack Time (min)

22.5~52

(a) PSNRs and attack time. (b) FIDs (different settings).

Fig. 5: Quantitative results of Neeko using Disguiser on
different hijackee and hijacking dataset pairs are reported. The
U-Net-based Disguiser and the Nearest scaling method are
used. The datasets in and outside the brackets represent the
hijackee and hijacking datasets, respectively.

] = h
?g B & E m Ca ”“
9 b v] ! ::él ¢
& F X A A\ -&-
b ARy " L ey
o © a H H g e
CelebA 2562 CelebA 2562 FFHQ 256° Chest X-ray 14 2562
(MNIST 322) (Konachan 32?) (Anime 322) (Anime 322)

Fig. 6: Samples of camouflaged synthetic images generated
by hijacked GANs on different hijackee and hijacking dataset
pairs: U-Net-based Disguiser and Nearest scaling method are
used; the hijackee dataset is indicated outside the brackets,
while the corresponding hijacking dataset is indicated inside.

The main drawback of the attack lies in its low efficiency,
as it takes a considerable amount of time (approximately
4,985 minutes) to camouflage 36k samples. Although the
camouflaged dataset can be reused, the computation time can
still be a burden.

C. Neeko Using Disguiser

We evaluate the Disguiser-based approach using the same
experimental setup as before, except for the use of the Dis-
guiser to generate the camouflaged samples. Initially, we train
the Disguiser on a randomly sampled set of 5k pairs, following
The PSNR values and computation time are
reported in We then proceed to train and evaluate the
GANSs using both the original and camouflaged samples. The

quantitative and qualitative results are presented in

The target GAN is then trained on the poisoned dataset, and
various types of Fréchet Inception Distance (FID) metrics are
measured and reported in

Our attack demonstrates high stealthiness. For instance, con-
sidering the case of hijacking CelebA 2562 with Konachan
322, all PSNRs exceeding the baseline 25 dB and
a stealth FID of only 3.79 (Figure 3b). The impact on the

FID of clean fake images is minimal, with an increase of only
1.30, while maintaining high-quality camouflaged images. The
higher hijacking FID is attributed to the factors discussed
previously. However, qualitative results show the relatively
high quality of the generated images for the hijacking task
according to The appendix shows more visual
samples in

and |[Figure 4] respectively. More visual samples are available
in in the appendix.

Comparing the Disguiser-based attack with the QP-based
attack, we observe a slight decrease in the mean PSNR (J
0.64) for the Disguiser, but the standard deviation is smaller,
resulting in a similar lower bound ({ 0.22). This indicates that
both attacks exhibit similar levels of stealthiness during the
training phase. In terms of the performance of the hijacked
GAN:s, the differences in various types of FID values do not
exceed 2.00.

However, the Disguiser-based attack demonstrates signif-
icantly higher efficiency. Training a U-Net-based Disguiser
usually requires less than 300 minutes, and camouflaging 36k
images usually takes less than 110 minutes. Compared with

the QP-based attack, Disguiser could save over 90% less time
to generate camouflaged samples. Considering we find that
Disguiser also has great transferability (see [Section VI), we
could easily re-use a pre-trained Disguiser to camouflage other
datasets, which further reduces the attack cost of our Disguiser.

Furthermore, we compare the performance of the U-Net
and original autoencoder (AE) in the original model hijacking
attack [I]]. During the training phase, as shown in Figure [3a
the PSNR drops by 1.62 dB for the two-layer AE and 2.19
dB for the four-layer AE compared to the U-Net. The two-
layer AE retains more image details but introduces additional
noise in the camouflaged samples, while the four-layer AE
sacrifices some details but introduces less noise. The U-
Net achieves both high detail preservation and low noise
introduction, resulting in superior stealthiness and equivalent
attack efficiency. In the inference phase, compared to the U-
Net, the two-layer AE reduces the hijacking FID by 4.44
at the expense of reducing the quality of the original task
(an increase of the original FID by 1.87). The four-layer AE
does not improve the hijacking FID nor maintain the hijackee
FID. Our empirical results show that the U-Net structure we
proposed has smaller perturbations on the original samples
than the previous AE structure, which means the attack is
more covert.

We also conduct the Disguiser-based attack using different
pairs of hijacking and hijackee datasets, PSNRs are reported
in and FIDs in Across all dataset
pairs, the lower bounds of PSNR exceed 25 dB, indicating
good stealthiness during the training phase. However, the
performance of the hijacked GANs varies depending on the
dataset pairs. When the hijacking task dataset is simple (e.g.,
using MNIST) or similar to the hijackee task dataset (e.g.,
using Konachan to hijack Celeba), the increase in original
FID for hijacked GANs compared to the clean versions is
minimal, with a maximum increase of only 1.79.

We additionally evaluate the attack success rate. In the
case where our poisoning rate is set to 30%, an ideal attack
success rate would lead to a similar distribution in the GAN’s
output. We generate 10,000 images from the hijacked GAN
and employ a pre-trained classifier to categorize these samples.
Our evaluation indicates that the attack success rate is, indeed,
close to 30%. Details can be found in[Table V]in the appendix.

Similarly, the highest stealth FID is less than 5 across all
experiment datasets except NIH Chest X-ray 14, indi-
cating high-quality synthetic image generation in different data
distributions. The performance of the hijacking task (hijacking
FID) is capped below 50. Again, we stress that the high FID, in
this case, is not representative of the qualitative results shown
in [Figure 6| [Figure 13b] However, when the hijacking task
is complex and significantly different from the hijackee task,
performance metrics are compromised. Both the original FID
and stealth FID exceed 20, with the hijacking FID reaching
as high as 69.93 in the case of NIH Chest X-ray 14 as

shown in [Figure 5H

D. Extension to the Neeko Using Disguiser

We now evaluate the extension to the Neeko using Disguiser
by replacing the default scaling method with a decoder. The

decoder and the Disguiser are jointly trained as introduced in
The overall process follows a similar framework
to the previous Neeko. The attack time and PSNR values are
presented in while the different types of FID values
are shown in We additionally provide examples
where previous attacks fail for image transformations in
[ure 7a] and [Figure 7b]

The extension to the attack using Disguiser shows mixed
results in terms of utility and stealthiness. Compared with
Disguiser with the Nearest algorithm, the original FID in-
creases by 3.42, indicating a decrease in utility, while the
increase in stealth FID is only 1.21, suggesting a slight
reduction in stealthiness. On the other hand, the hijacking FID
decreases by 10.72, showing an improvement in the hijacking
task. Overall, the Robust Neeko especially involves trade-
offs between utility and stealthiness, with the inclusion of
the decoder benefiting the hijacking task but impacting utility
and stealthiness. Further optimization, such as using a more
complex architecture for the decoder and encoders, is needed
to strike a better balance.

Finally, the inclusion of the decoder in the attack signif-
icantly improves its robustness against image augmentation
techniques. We randomly selected 100 training images and
100 synthetic images and performed image transformation
operations of translation and mirroring on them. Next, we
used the trained decoder to down-sample these transformed
images and manually annotate their image types. We find
that all transformed images could be down-sampled into small
images, which are similar to the hijacking dataset and contain
only slight artifacts. This can also be observed in the visual
samples in|Figure 7c|and [Figure 7d] These images demonstrate
the attack’s ability to withstand various image transformations.

E. Hyperparameters

The various hyperparameter settings for the image scaling

attack have been extensively discussed in previous works [7],
[8l; hence, we omit that section and focus solely on the
hyperparameters related to Neeko.
Different Scaling Methods: We first evaluate Neeko with dif-
ferent downscaling methods, including Nearest, Bilinear, and
Bicubic. For this setting, we use the Neeko using the U-Net-
based Disguiser to hijack a CelebA GAN with Konachan
dataset.

Our evaluation shows that the PSNR lower bound decreased
by 1.17 dB for Bilinear and 1.34 dB for Bicubic compared to
Nearest. Moreover, both Bilinear and Bicubic scaling methods
achieve lower hijacking FID values, reducing them by 21.88
and 23.61, respectively, but at the cost of decreased quality in
the clean fake images (original FID increases by 2.65 and 2.79,
respectively). The complete evaluation results, including the
quantitative and qualitative results, can be found in
and These findings demonstrate that scaling methods
with larger perturbations, indicated by lower PSNR values,
contribute to learning the hijacking task but can also negatively
impact the overall utility of the GAN. More visual results are
available in [Figure 14] and |[Figure 13|in the appendix.
Different Target GANs: To show the generalization of the
Neeko, we evaluate it on some simple GAN architectures,

2562
2567

322

Original

- 2 o
2 ; oSl S PLR S
B W

322

Mirror Translated Original Mirror Translated

(a) Samples of camouflaged real images (GAN’s training data) (b) Samples of camouflaged real images (GAN’s training data)
output by the QP-based attack. output by the Disguiser.

%%3 @gg

Fake image
(original)

2562
2562

322
322

Fake image
(translated)

Fake image

Original Mirror Translated (mirror)

(c) Samples of camouflaged real images (GAN’s training data) (d) Samples of camouflaged synthetic images (GAN’s output)
output by the Disguiser in Robust Neeko. generated by the hijacked GAN in Robust Neeko.

Fig. 7: Visual examples for the robustness of camouflaged images: the bottom texts indicate the corresponding image
transformation operation. The hijackee and hijacking resolution is 2562 and 322 respectively. In IFigure 7a) and |[Figure 7bj
we provide instances where previous attacks fail for image transformations; in [Figure 7c| and [Figure 7d, we provide instances

where Robust Neeko could resist image transformations.

namely DCGAN and WGAN [21]}, using the MNTST 162
dataset to hijack Celeba 2562 GANs trained. The DCGAN
achieves an original FID of 91.03, stealth FID of 103.22, and
hijacking FID of 47.51, while the WGAN achieves an original
FID of 69.33, stealth FID of 72.76, and hijacking FID of
38.86. It is important to note that these large FID values are
due to the weak performance of the GANs compared to the
state-of-the-art ones, e.g., a clean DCGAN results in 87.63.
Despite these GANs not being over-parameterized and simple,
our hijacking attacks are still successful.

We also test our attack against another advanced GAN,
StyleGAN v2 [22]], with the same settings as described earlier,
resulting in an original FID of 3.98, stealth FID of 3.92, and
hijacking FID of 6.01. When using the Konachan dataset
as the hijacking dataset, the hijackee FID, stealth FID, and
hijacking FID are 4.39, 3.95, and 42.61, respectively. These
visual samples can be found in in the appendix.
Different Data Poisoning Rate: Generating tasks require
more training data than classification tasks, thus needing
higher data poisoning rates. Our study on hijacked GANs’ per-
formance with varying data poisoning rates, shown in[Figure 8]
includes tests under two conditions: a constant total number
of training samples and a constant number of camouflaged
training samples.

Findings indicate the original task’s performance is min-
imally affected by data poisoning rates, with the original
FID score increasing by only 3.36 from a 20% to an 80%
poisoning rate. Furthermore, the hijacking task’s performance
is more reliant on the quantity of camouflaged samples than
the poisoning rate itself. Keeping the number of camouflaged
samples constant while lowering the poisoning rate from 70%
to 30% results in a slight hijacking FID increase of 2.87.
This suggests that Neeko can achieve high performance with
a lower poisoning rate in large training sets, but a higher

50 50
—=— Original FID
40 Hijacking FID 40

. —eo— Stealth FID
30 o 30

—=— Original FID
Hijacking FID
—e— Stealth FID

FID

[
20 20

10 — 10

0 0
24k 36k 48k 60k 2k 84k 96k 80k
(20%) (30%) (40%) (50%) (60%) (70%) (S0%)

Number of Camouflaged Training Samples

100k 120k 140k 160k 180k 200k
(T0%) (60%) (50%) (43%) (38%) (33%) (30%)
Number of Training Samples

(a) Fixed number of total (b) Fixed number of camou-
training sample flaged sample

Fig. 8: FIDs of different poisoning rates. Poisoning rates are
noted in brackets. Ce1ebA 1282 and Konachan 16 are used.

rate may be necessary for smaller sets to maintain hijacking
effectiveness. The stealth FID is relatively stable, showing
that the poisoning rate has a minor effect on this metric.
These findings emphasize the need for a balance between
attack efficacy and data poisoning rates for attack stealthiness,
highlighting the critical nature of Neeko’s concealment.

Different)\ Values:)\ in the loss function of Disguiser
affects the quality of camouflaged hijackee images and down-
sampled hijacking images. Thus, we test different A values to
explore their potential effects. The related results are shown
in

We found that the attack is ineffective when A is O or 1.
Because in these cases, the hijackee or hijacking image does
not exist. When) is small, the original FID will increase, and
the hijacking FID will decrease. This means that the utility is
compromised. When \ is large, the situation is the opposite.
The above shows that the value of A needs to be weighed
according to the needs of the adversary.

—=— Original FID
200 Hijacking FID
—e— Stealth FID

Fig. 9: FIDs of different \ values. CelebA 1282 and
Konachan 162 are used.

FE Summary

In summary, model hijacking attacks against GANs are
highly effective across various GAN architectures and bench-
mark datasets. Both Disguiser-based and QP-based attacks are
similarly effective, though the former is more efficient. The U-
Net-based model outperforms the original autoencoder [1] in
every aspect of hijacking, suggesting its potential as a standard
architecture for these attacks. While the extended Disguiser-
based attack improves image quality and resilience, it slightly
reduces the stealth and utility of the hijacked GAN. The
performance of hijacked GANs is influenced by factors like
scaling methods and data poisoning rates, which can affect the
visibility of camouflaging artifacts and the overall concealment
of the attack. Adversaries must carefully balance these factors
when setting hyperparameters for Neeko.

V. DEFENSES

In this section, we discuss two common defense strategies
under the same threat model as data poisoning attacks, in-
cluding the detection of poisoned samples and the denoising
of such samples.

A. Detection

In general, defenders are unaware of the adversary’s specific
poisoning methods, and the camouflaged samples are visually
highly similar to clean samples. Therefore, they primarily rely
on unsupervised detection methods to examine the training set.
We employ three of the most popular unsupervised clustering
algorithms: DBSCAN [23], Agglomerative Clustering [24],
and K-Means [25]], for defense purposes. Specifically, we
create a test set of 200 CelebA images, 30% of which
are camouflaged, and then attempt to detect the camouflaged
images using different clustering algorithms. According to our
experimental results, DBSCAN is ineffective in detection, clas-
sifying all 200 images into the same category. Agglomerative
Clustering divides the images into two clusters. However, we
find that in one cluster, 30 out of 61 images are camouflaged,
while in the other, 70 out of 139 are camouflaged. This
indicates that Agglomerative Clustering is unable to detect
camouflaged images effectively. The results from K-Means are
similar. We believe that in Neeko, the proportion of manipu-
lated pixels is small, so unsupervised clustering methods tend
to cluster images based on other features (like hair color in
CelebA).

Next, we consider a more knowledgeable defender, one
with background knowledge of image scaling attacks. In
this case, they would use color histogram detection or color
scattering detection [7]], [8] specific to image scaling attacks
in their attempts to detect. However, our experimental results
suggest that even knowledgeable defenders require significant
effort to detect camouflaged samples. Specifically, in the color
histogram detection, we consider two samples as shown in
IFigure 10al one camouflaged and the other clean. We then
scale them to different resolutions, including 322 (hijacking
resolution), 502, and 1002. As shown in [Figure 10b] the
clean sample maintains a very similar histogram distribution
across different resolutions. However, as shown in
the camouflaged sample also has a similar histogram distri-
bution at resolutions 502 and 1002. The color histogram
distribution is only significantly different at the hijacking
resolution. The results of color scattering detection are similar.
Since only the adversary knows the hijacking resolution,
this means that even a knowledgeable defender would need
multiple attempts to find the hijacking resolution and the
camouflaged samples.

Lastly, we attempt to perform detection in the frequency
domain, where methods for detection in this domain have
proven to be particularly effective against current data poi-
soning attacks [26]. We observe that the camouflaged images,
which are attacked by Neeko, exhibit certain regular speckles
in the frequency domain, which are introduced by the hijacking
of images and scaling operations. Differentiating between
the frequency spectrograms also requires manual intervention.
However, the adversary can reduce the frequency domain
visibility of the attack by increasing A in the loss function
of Disguiser (as shown in or selecting images with
a similar tone to the hijackee image — at the cost of color
difference in the hijacking image. In addition, we emphasize
that according to previous work [7]], [8]], our attack settings are
not obvious to the human eye. And when the poisoning rate
is low, the attack effect is still considerable (see [Figure §).

In summary, our proposed attack is covert and difficult to
detect for most detection techniques. For effective detection
methods, such as those based on scaling and frequency domain
analysis, the involvement of human effort is necessary. When
dealing with large training datasets or when the poisoning rate
is low, such detection could prove to be costly.

B. Denoising

Detecting and removing camouflaged training samples will
impact the size of the training set; therefore, defenders also
consider using denoising techniques to improve the utilization
of the data. Since the defenders do not know the specific
poisoning techniques, they primarily employ blind denoising
techniques to remove the injected hijacking signals. To assess
the viability of this defensive strategy, we employ different
filters, including the random filter, the low pass filter, and
the non-local means filter. They are usually considered to be
the most efficacious methods in the realm of blind denoising

techniques. In of the appendix, which provides an
illustrative representation, we delineate the outcomes yielded

Clean Camouflaged
Sample Sample

(a) The camouflaged sample and its corresponding clean
sample.

2562 (Hijackee Resolution)

— 100*
502

322 (Hijacking Resolution)

Percentage

05 | e — N;--»———«-«"N\j \V

0 50 100 150 200 250
Pixel Value

(b) Normalized color histograms of the clean sample at dif-
ferent resolutions.

2.0

2567 (Hijackee Resolution)

— 100*
502

322 (Hijacking Resolution)

Percentage

).5 [¥
| USSR S
0.0

0 50 100 150 200 250
Pixel Value

(c) Normalized color histograms of the camouflaged sample
at different resolutions.

Fig. 10: Normalized color histograms of the samples at dif-
ferent resolutions. We use the average values of three color
channels to compute and plot. The x-tick labels indicate the
pixel values, and the y-tick labels indicate the normalized
counts (Ncounts/Ntotal_pizels X 100%)

by the application of the non-local means filter to images
generated by the hijacked GAN. The results suggest a no-
ticeable mitigative impact on the detrimental effects induced
by the adversarial attack. Nevertheless, it should be noted that
this denoising procedure comes at the cost of significantly
compromising the intricacy and detail of the generated images.
This is substantiated by the notable escalation in the FID
metrics for the sanitized synthetic images, measured to be
43.03. Such a compromise elucidates the trade-off that exists
between defenses against the attack and preserving the high
quality of images generated by the hijacked GAN. The results
obtained using other types of filters are similar to those
obtained with the non-local means filter; therefore, we omit
the results from other filters.

VI. DISCUSSION
A. Transferability

The conventional image scaling attack is distinguished by
its transferability, which means the attack outcomes are only
related to image pixel positions rather than image contents.
To examine transferability in Neeko with Disguiser, we ex-
periment using a pre-trained Disguiser on various datasets.
Specifically, the Disguiser trained with Konachan 322 and
CelebA 2562 as hijacking and hijackee datasets is applied to

TABLE II: Experiment results for transferability. In the
first column, the hijackee/hijacking dataset is indicated out-
side/inside the brackets.

Dataset Pairs | PSNR (dB) | L1 Distance
CelebA (Konachan) \ 30.012 \ 0.001
CelebA (MNIST) \ 29.730 \ 0.004
Chest X-ray 14 (Anime) | 28.991 \ 0.007
FFHQ (Anime) \ 29.624 \ 0.005

camouflage different datasets. We assess the PSNR between
camouflaged and original hijackee images and the average L1
distance between down-sampled camouflaged and hijacking
images, with a sample size of 1,000 images. Results in[Table 1|
indicate that, like conventional attacks, our method focuses
on pixel positions across datasets. Thus, training a single
Disguiser on a well-selected dataset can efficiently adapt
Neeko to various datasets, enhancing cost-efficiency.

B. Fine-grained Manipulation of Hijacked GANs

We have shown that adversaries can hijack a classical GAN
by poisoning its dataset, a precursor to advanced manipula-
tions of generated images. Here, we will introduce the fine-
grained manipulation of hijacked GANs. More specifically,
utilizing methods from prior research [27], we train an SVM
to differentiate between clean and camouflaged input noises,
enabling us to dictate the production of genuine or fake images
by altering input noise. This technique allows for generating
images in specific classes, as confirmed by our experiments

detailed in underscoring the fine-grained control
that our attack offers over synthetic image generation.

VII. RELATED WORKS
A. Testing Time Attacks

Testing time attacks occur during the post-training phase,

specifically during inference. While there are notable test
time attacks such as membership inference [28]-[31] and data
reconstruction [32]], we focus on adversarial examples since it
is the most relevant to this work.
Adversarial Examples: Adversarial examples [33[|-[37] are
specifically designed inputs that aim to fool machine learn-
ing models into making incorrect decisions. These perturbed
inputs are almost indistinguishable from regular test data but
can lead the model to erroneous conclusions. The generation
of adversarial examples often entails the addition of small
noise to the original input, usually computed via optimization
techniques. In the realm of GANSs, adversarial examples are
designed to be input vectors, leading the GANs to produce
unexpected synthetic images [38§].

While both adversarial examples [38] and Neeko aim to
generate images from an adversarial distribution, they operate
at distinct stages of the machine learning pipeline and employ
different methods. The Neeko involves poisoning the training
dataset of the target GAN, unlike adversarial examples. Yet,
Neeko proves more efficient during test time—when utilizing
the GAN—as it does not demand modifications to the noise
vector, in contrast to the adversarial example approach.

3 g

(a) Clean.

(b) Camouflaged (Disguiser’s A = 0.35). (c) Camouflaged (Disguiser’s A = 0.70).

Fig. 11: Selected samples, including clean and camouflaged samples, and their corresponding frequency spectrograms.

s [|

pRRn

<
+\ > -

e Il H B R R "

(a) An example of interpolation: moving latent codes along the
normal or gradient direction of the classifier can manipulate the
indicates the camouflaged

29

images generated by the GAN; “+
direction, “-” indicates the clean direction.

(b) An example of GAN exploiting: the bottom left
2 images are the clean image and its 162 version;
the other images are manipulated camouflaged im-
ages and their 162 versions.

Fig. 12: Latent codes manipulation of the target GAN: U-Net-based Disguiser and Nearest scaling method are used; the
hijacking dataset and hijackee dataset are MNIST 162 and CelebA 1282, respectively; in the first row shows
the visual appearances of the camouflaged fake images at the hijackee resolution and the second row shows those at the
corresponding hijacking resolution; the resolution corresponding to each row is labeled on the left of the images.

B. Training Time Attacks

Training time attacks occur during the training of the target

model. Below, we discuss the most relevant training time
attacks to Neeko.
Data Poisoning Attacks: Data poisoning attacks [3|], [4]], [39],
[40] involve adversaries deliberately altering the training data
to degrade a machine learning model’s performance. By intro-
ducing poisoned data into the training set, the attacker aims
to mislead the model, e.g., leading it to incorrect predictions
or classifications. These attacks pose concerns since they can
occur during the data collection phase, potentially undermining
the model’s accuracy and reliability.

Neeko operates under the same threat model as data

poisoning attacks, giving it a wide range of practical appli-
cation scenarios. Yet, the goals of Neeko significantly deviate
from traditional data poisoning attacks. While the Neeko’s
objective is to subtly hijack the GAN with an additional gen-
eration task without hindering its original performance, data
poisoning attacks mainly focus on deteriorating the model’s
primary task performance.
Backdoor Attacks: Backdoor attacks [41]-[45] introduce
secret triggers into a target model during its training, enabling
an adversary to influence the model’s output when such a
trigger is detected in the input. Several backdoor techniques
target GANs, as demonstrated in [46]-[48]]. These approaches
mainly implement the hidden backdoors into trained GAN
models, often by adjusting the loss function or modifying the
GAN’s architecture.

Existing backdoor attacks targeting GANs typically require
white-box access and necessitate alterations to the GAN’s loss
function. In contrast, our method hijacks the desired GAN
without tampering with its architecture or loss function. In

Neeko, the adversary only needs to poison the target model’s
training dataset. Our approach is model-agnostic, necessitating
no prior knowledge about the targeted model. Furthermore,
Neeko can be seen as an implicit form of multi-task learn-
ing [49], [50], encoding additional tasks in the training samples
rather than the loss or neural network structure.

VIII. LIMITATIONS

Neeko demonstrates promising prospects, yet it also exhibits
certain limitations.
Hijacking Resolution: The first constraint is that the hijacking
task must be smaller than the original, as larger hijacking
images complicate concealment and learning for the target
GAN. More concretely, to ensure stealthiness and invisible
artifacts, the scaling factor « is set to 8.0. How to attack
using hijacking tasks with larger relative resolution is worth
exploring in the future.
Data Poisoning Rate: GANs typically require more training
data than classifiers, and generative tasks are much more
challenging than classifying. The above factors lead to a
higher data poisoning rate for effective hijacking, although the
stealthiness and high detection difficulty of Neeko partially
mitigate this. Specifically, we set the data poisoning rate to
0.30 while that of the model hijacking attack against classi-
fiers exceeds 0.17. Attackers must strike a balance between
hijacking performance and data poisoning rate.
Pairing of Hijackee and Hijacking Datasets: Success also
depends on the similarity and complexity of the hijacking
task to the original; preliminary tests with vastly different
datasets like LSUN-Church and CelebA are unsatisfactory.
In our experiments, the performance of pairing NIH Chest
X-ray 14 and Anime is also poorer than other pairings.

Performance and Metrics: The performance of the hijacking
task, from the aspect of the FID metric, shows room for
optimization. Moreover, relying on FID scores might not
fully reflect the qualitative success of hijacking, suggesting
the exploration of alternative metrics could enhance future
research.

IX. CONCLUSION

In this paper, we present a novel model hijacking attack
against GANs, namely Neeko. This attack shares the same
threat model as the data poisoning attack. Neeko accom-
plishes its objectives without altering the GAN’s inherent
architecture or loss function. Neeko achieves the hijacking
generation task by merely manipulating the samples in the
training dataset. The Neeko can potentially be easily extended
to any image generation model, like diffusion models since
it is independent of target generative models’ architectures
and only manipulates the samples in the training set. We
explore various techniques for the effective and covert ex-
ecution of Neeko, including image scaling attack and the
Disguiser. Notably, the U-Net-based Disguiser we propose acts
as a particularly efficacious methodology in terms of both
performance and efficiency. Comprehensive experimentation
demonstrates the capacity of Neeko to compromise GANs
with different architectures across a wide range of datasets.
Defenses against Neeko are challenging, with knowledgeable
defenders struggling to detect the attack.

Our work unearths several urgent ethical and safety con-
cerns. Specifically, our work calls attention to potential vulner-
abilities in the governance of datasets. Adversaries, exploiting
these vulnerabilities, could potentially subvert publicly avail-
able GANSs using illegal or copyrighted datasets. This reveals
the risks of intellectual property violation and illegal issues.
Moreover, our study contributes to the growing discourse on
the risks surrounding parasitic computing. By highlighting
how adversaries can exploit the target GAN’s training process
to reduce computational and maintenance overheads of their
own tasks, we illuminate an emerging security concern. This
form of parasitism could potentially result in a significant
resource drain of benign users.

REFERENCES

[11 A. Salem, M. Backes, and Y. Zhang, “Get a Model! Model Hijacking
Attack Against Machine Learning Models,” in Network and Distributed
System Security Symposium (NDSS). Internet Society, 2022.

[2] W. M. Si, M. Backes, Y. Zhang, and A. Salem, “Two-in-One: A
Model Hijacking Attack Against Text Generation Models,” CoRR
abs/2305.07406, 2023.

[3] M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li,
“Manipulating Machine Learning: Poisoning Attacks and Countermea-
sures for Regression Learning,” in IEEE Symposium on Security and
Privacy (S&P). IEEE, 2018, pp. 19-35.

[4] A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras,
and T. Goldstein, “Poison Frogs! Targeted Clean-Label Poisoning At-
tacks on Neural Networks,” in Annual Conference on Neural Information
Processing Systems (NeurIPS). NeurIPS, 2018, pp. 6103-6113.

[5] “StyleGAN 3.” https://lambdalabs.com/blog/stylegan-3.

[6] “Google Cloud Price Table,” https://cloud.google.com/vertexai/pricing#
europel

[71 Q. Xiao, Y. Chen, C. Shen, Y. Chen, and K. Li, “Seeing is Not Believing:
Camouflage Attacks on Image Scaling Algorithms,” in USENIX Security
Symposium (USENIX Security). USENIX, 2019, pp. 443—460.

[8]

[9]

[10]

(1]

[12]

(13]

[14]

[15]

(16]

[17]
(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]

[28]

[29]

[30]

[31]

E. Quiring, D. Klein, D. Arp, M. Johns, and K. Rieck, “Adversarial
preprocessing: Understanding and preventing image-scaling attacks in
machine learning,” in USENIX Security Symposium (USENIX Security).
USENIX, 2020, pp. 1363-1380.

J. Sohl-Dickstein, E. A. Weiss, N. Maheswaranathan, and S. Ganguli,
“Deep Unsupervised Learning using Nonequilibrium Thermodynamics,”
in International Conference on Machine Learning (ICML). PMLR,
2015, pp. 2256-2265.

R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer,
“High-Resolution Image Synthesis with Latent Diffusion Models,” in
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE, 2022, pp. 10684-10695.

P. Dhariwal and A. Q. Nichol, “Diffusion Models Beat GANs on Image
Synthesis,” in Annual Conference on Neural Information Processing
Systems (NeurIPS). NeurIPS, 2021, pp. 8780-8794.

Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep Learning Face Attributes
in the Wild,” in IEEE International Conference on Computer Vision
(ICCV). IEEE, 2015, pp. 3730-3738.

T. Karras, S. Laine, and T. Aila, “A Style-Based Generator Architecture
for Generative Adversarial Networks,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 1EEE, 2019, pp. 4401-4410.
X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M. Summers,
“Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on
weakly-supervised classification and localization of common thorax dis-
eases,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, 2017, pp. 2097-2106.

“MNIST,” http://yann.lecun.com/exdb/mnist/,

“Konachan,” https://aistudio.baidu.com/aistudio/datasetdetail/110820/0.

“Anime,” https://github.com/bchaol/Anime-Face-Dataset.

M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“GANs Trained by a Two Time-Scale Update Rule Converge to a
Local Nash Equilibrium,” in Annual Conference on Neural Information
Processing Systems (NIPS). NIPS, 2017, pp. 6626-6637.

G. Parmar, R. Zhang, and J. Zhu, “On aliased resizing and surprising
subtleties in GAN evaluation,” in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 1EEE, 2022, pp. 11400-11410.

A. Radford, L. Metz, and S. Chintala, “Unsupervised Representation
Learning with Deep Convolutional Generative Adversarial Networks,”
in International Conference on Learning Representations (ICLR), 2016.
M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein Generative Ad-
versarial Networks,” in International Conference on Machine Learning
(ICML). PMLR, 2017, pp. 214-223.

T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila,
“Analyzing and Improving the Image Quality of StyleGAN,” in [EEE
Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE, 2020, pp. 8107-8116.

M. Ester, H. Kriegel, J. Sander, and X. Xu, “A Density-Based Algorithm
for Discovering Clusters in Large Spatial Databases with Noise,” in
International Conference on Knowledge Discovery and Data Mining
(KDD). AAAI 1996, pp. 226-231.

D. Miillner, “Modern hierarchical, agglomerative clustering algorithms,”
CoRR abs/1109.2378, 2011.

T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman,
and A. Y. Wu, “An Efficient k-Means Clustering Algorithm: Analysis
and Implementation,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 2002.

T. Wang, Y. Yao, F. Xu, S. An, H. Tong, and T. Wang, “An Invisible
Black-Box Backdoor Attack Through Frequency Domain,” in European
Conference on Computer Vision (ECCV). Springer, 2022, pp. 396-413.
Y. Shen, J. Gu, X. Tang, and B. Zhou, “Interpreting the Latent Space
of GANSs for Semantic Face Editing,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 1EEE, 2020, pp. 9240-9249.
R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership Infer-
ence Attacks Against Machine Learning Models,” in IEEE Symposium
on Security and Privacy (S&P). 1EEE, 2017, pp. 3-18.

A. Salem, Y. Zhang, M. Humbert, P. Berrang, M. Fritz, and M. Backes,
“ML-Leaks: Model and Data Independent Membership Inference At-
tacks and Defenses on Machine Learning Models,” in Network and
Distributed System Security Symposium (NDSS). Internet Society, 2019.
C. A. C. Choo, FE Tramer, N. Carlini, and N. Papernot, “Label-
Only Membership Inference Attacks,” in International Conference on
Machine Learning (ICML). PMLR, 2021, pp. 1964-1974.

N. Carlini, S. Chien, M. Nasr, S. Song, A. Terzis, and F. Tramer, “Mem-
bership Inference Attacks From First Principles,” in IEEE Symposium
on Security and Privacy (S&P). 1EEE, 2022, pp. 1897-1914.

https://lambdalabs.com/blog/stylegan-3
https://cloud.google.com/vertexai/pricing#europe
https://cloud.google.com/vertexai/pricing#europe
http://yann.lecun.com/exdb/mnist/
https://aistudio.baidu.com/aistudio/datasetdetail/110820/0
https://github.com/bchao1/Anime-Face-Dataset

[32]

[33]

[34]

[35]

[36]

(37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

[48]

[49]
[50]

A. Salem, A. Bhattacharya, M. Backes, M. Fritz, and Y. Zhang,
“Updates-Leak: Data Set Inference and Reconstruction Attacks in On-
line Learning,” in USENIX Security Symposium (USENIX Security).
USENIX, 2020, pp. 1291-1308.

1. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and Harnessing
Adversarial Examples,” in International Conference on Learning Rep-
resentations (ICLR), 2015.

H. Yu, K. Yang, T. Zhang, Y.-Y. Tsai, T.-Y. Ho, and Y. Jin, “CloudLeak:
Large-Scale Deep Learning Models Stealing Through Adversarial Exam-
ples,” in Network and Distributed System Security Symposium (NDSS).
Internet Society, 2020.

H. Wu, C. Wang, Y. Tyshetskiy, A. Docherty, K. Lu, and L. Zhu,
“Adversarial Examples for Graph Data: Deep Insights into Attack and
Defense,” in International Joint Conferences on Artifical Intelligence
(IJCAI). 1ICAI 2019, pp. 4816-4823.

L. Fowl, M. Goldblum, P. Chiang, J. Geiping, W. Czaja, and T. Gold-
stein, “Adversarial Examples Make Strong Poisons,” in Annual Confer-
ence on Neural Information Processing Systems (NeurIPS). NeurlPS,
2021, pp. 30339-30351.

Z. Zhao, D. Dua, and S. Singh, “Generating Natural Adversarial Exam-
ples,” in International Conference on Learning Representations (ICLR),
2018.

J. Kos, I. Fischer, and D. Song, “Adversarial examples for generative
models,” in IEEE Security and Privacy Workshops (SPW). 1EEE, 2018,
pp. 36-42.

B. Biggio, B. Nelson, and P. Laskov, “Poisoning Attacks against Support
Vector Machines,” in International Conference on Machine Learning
(ICML). icml.cc / Omnipress, 2012.

V. Tolpegin, S. Truex, M. E. Gursoy, and L. Liu, “Data Poisoning
Attacks Against Federated Learning Systems,” in European Symposium
on Research in Computer Security (ESORICS). Springer, 2020, pp.
480-501.

Y. Yao, H. Li, H. Zheng, and B. Y. Zhao, “Latent Backdoor Attacks on
Deep Neural Networks,” in ACM SIGSAC Conference on Computer and
Communications Security (CCS). ACM, 2019, pp. 2041-2055.

J. Jia, Y. Liu, and N. Z. Gong, “BadEncoder: Backdoor Attacks to Pre-
trained Encoders in Self-Supervised Learning,” in IEEE Symposium on
Security and Privacy (S&P). 1EEE, 2022.

Z. Zhang, J. Jia, B. Wang, and N. Z. Gong, “Backdoor Attacks to Graph
Neural Networks,” in ACM Symposium on Access Control Models and
Technologies (SACMAT). ACM, 2021, pp. 15-26.

Z. Sha, X. He, P. Berrang, M. Humbert, and Y. Zhang, “Fine-Tuning
Is All You Need to Mitigate Backdoor Attacks,” CoRR abs/2212.09067,
2022.

A. Saha, A. Subramanya, and H. Pirsiavash, “Hidden Trigger Backdoor
Attacks,” in AAAI Conference on Artificial Intelligence (AAAI). AAAI,
2020, pp. 11957-11965.

A. Rawat, K. Levacher, and M. Sinn, “The Devil is in the GAN:
Backdoor Attacks and Defenses in Deep Generative Models,” CoRR
abs/2108.01644, 2022.

A. Salem, Y. Sautter, M. Backes, M. Humbert, and Y. Zhang, “BAAAN:
Backdoor Attacks Against Autoencoder and GAN-Based Machine
Learning Models,” CoRR abs/2010.03007, 2020.

R. Jin and X. Li, “Backdoor Attack is a Devil in Federated GAN-based
Medical Image Synthesis,” CoRR abs/2207.00762, 2022.

R. Caruana, “Multitask learning,” Machine Learning, 1997.

Y. Zhang and Q. Yang, “A Survey on Multi-Task Learning,” IEEE
Transactions on Knowledge and Data Engineering, 2022.

APPENDIX
DESCRIPTION OF TERMS

Here we describe the terms used in Neeko.

TABLE III: Description of different terms used in Neeko.

Term \ Definition
Neeko is a champion in League of Legends. She
can blend into any crowd by borrowing the others’
Neeko appearances, which match the function of our Dis-

guiser. We borrow the champion’s name “Neeko”
to describe our proposed attacks.

Original Dataset | Training dataset of the target GAN’s original task.

Hijackee Dataset ‘ The dataset from the same distribution as the target

GAN’s training dataset.

Hijackee Samples ‘ Samples from the hijackee dataset. Usually, they

are at a big resolution.

Hijacking Dataset | Training dataset of the adversary’s hijacking task.

Samples from the hijacking dataset. Usually, they

Hijacking Samples ‘ are at a small resolution.

being

Camouflaged Dataset ‘ The modified hijackin%ij dataset after

stealthily embedded in a hijackee dataset.

Sam})les from the camouflaged dataset. They look
similar to the corresponding hijacking samples at
the large resolution, but look similar to hijacked
samples at the small resolution.

Camouflaged Samples

Dataset where the target GANs will be trained
(the concatenation of the camouflaged and original
datasets).

Poisoned Dataset

The resolution of the hijackee dataset. Usually, it

Hijackee Resolution is larger than the hijacking resolution.

Hijacking Resolution | The resolution of the hijacking dataset.

COMPUTE RESOURCES

We train Disguiser and poison the images on Server
X10DRG-KS80 . We train all the StyleGANs on Server DGX-
A100. Details are shown in [Table TVl

TABLE IV: Compute resource details.

Server Name | Model | CPU | GPU | RAM
Supermicro Intel Xeon 1
X10DRG-K80 ‘ SYS-4028GR-TRT| E5-2697 | Tesla K80 ‘5‘2 GB
NVIDIA DGX |AMD Rome 2
DGX-A100 ‘ A100 (40G) 7742 ‘NVIDIA AIOO‘ 1 TB

DATASET DESCRIPTION

To evaluate Neeko, we conduct comprehensive experiments
on different benchmark datasets. For clarity, we now briefly
introduce the related datasets.

CelebA: CelebA [12] dataset is an extensive collection of
over 200,000 labeled celebrity images designed for various
facial analysis tasks. It is compiled to serve as a benchmark
for computer vision and ML algorithms, featuring a diverse set
of images in terms of ethnicity, age, and gender. Because of
its scale and comprehensive annotations, CelebA has become
a cornerstone in the development and evaluation of algorithms
for facial recognition and generative modeling.

FFHQ: FFHO [13] dataset is a high-quality dataset consisting
of 70,000 human facial images at 1024 x 1024 resolution.
Unlike other face datasets, FFHQ contains a wide range of
ages, ethnicities, and image backgrounds, making it highly

diverse and well-suited for training and evaluating facial
analysis algorithms. Its high resolution and comprehensive
diversity make it a valuable resource for developing facial
analysis and generative models.

NIH Chest X-ray 14: NIH Chest X-ray 14 [14]is
a publicly available collection of more than 100,000 de-
identified chest X-ray images sourced from the National
Institutes of Health Clinical Center. Researchers in both the
medical and computer science communities frequently utilize
this dataset to advance the state-of-the-art in medical image
recognition and diagnosis techniques.

MNIST: MNIST [15] is a widely used resource in the ML and
computer vision communities, consisting of a collection of
70,000 grayscale images of handwritten digits (0 through 9).
MNIST is a relatively simplistic/basic dataset for testing ML
models, particularly in digit recognition and computer vision.
Konachan Avatar: Konachan Avatar [16] consists of
44,766 high-quality cartoon avatar images, all of which
are unlabeled. These images are subsequently processed and
cleaned manually. Given its high quality and sizable volume,
this dataset offers a valuable resource for researchers interested
in ML tasks related to cartoon-style facial recognition or
generative modeling.

Anime Faces: Anime Faces [l17] comprises 63,632
high-quality anime faces processed using the anime face
detection algorithm. Unlike other popular datasets like the
Danbooru, which is noted for its less organized structure,
this dataset features high-quality anime character images with
clean backgrounds and rich colors.

ADDITIONAL RESULTS OF EXPERIMENTS

TABLE V: Experiment results of attack success rates (ASR).
In the first column, the hijackee dataset is indicated outside the
brackets, while the corresponding hijacking dataset is indicated
inside the brackets.

Dataset Pairs \ ASR (%)
CelebA 1282 (Konachan 16%) | 28.01
CelebA 1282 (MNIST 162) | 29.17
CelebA 2562 (Konachan 322) | 28.15
CelebA 2562 (MNIST 322) \ 29.12
FFHQ 2562 (Anime 322) | 27.87
Chest X-ray 14 2562 (Anime 322) | 2237

15

(a) Quadratic programming and Nearest are used as (b) U-Net-based Disguiser and Nearest are used as
the attack method and scaling method, respectively. the attack method and scaling method, respectively.

(c) U-Net-based Disguiser and Bilinear are used as (d) U-Net-based Disguiser and Bicubic are used as
the attack method and scaling method, respectively. the attack method and scaling method, respectively.

Fig. 13: Visual samples of downsampled poisoned fake images: the hijacking dataset and hijackee dataset are Konachan 322
and CelebA 2562, respectively.

U-Net Mg U-Net M,
(Nearest) (Bilinear)

U-Net M, 4-layer AE M, 2-layer AE M, 4-layer AE M,
(Bicubic) (Robust decoder) (Nearest) (Nearest)

Fig. 14: Visual camouflaged training samples under different attack and scaling methods: the methods outside and inside the
bracket are the attack methods and the corresponding scaling methods, respectively; the hijacking dataset and hijackee dataset
are Konachan 322 and CelebA 2562, respectively.

2562

2,

© ot
CelebA 2562 CelebA 256°
(MNIST 322) (Konachan 32%)

(b) Visual samples of poisoned fake images output by the
hijacked StyleGAN v2: the datasets outside and inside the

bracket are the hijackee dataset and the corresponding hijack-
ing dataset, respectively.

(a) Visual samples of poisoned fake images output by the
hijacked DCGAN and WGAN: the hijacking dataset and hi-
jackee dataset are MNIST 162 and CelebA 642, respectively.

Fig. 15: Visual results of different target GANs: U-Net-based Disguiser and Nearest scaling method are used; the first row
shows the visual appearances of the poisoned fake images at the hijackee resolution and the second row shows those at the
corresponding hijacking resolution; the resolution corresponding to each row is labeled on the left of the images.

2562

322

Fig. 16: Visual appearances of poisoned fake images and the corresponding de-noised versions: the hijacking dataset and hijackee
dataset are Konachan 322 and Celeba 2562, respectively; the first row shows the visual appearances of the poisoned fake

images at the hijackee resolution and the second row shows those at the corresponding hijacking resolution; the resolution
corresponding to each row is labeled on the left of the images.

	Introduction
	Our Contribution

	Preliminaries
	Image Scaling Attack
	Model Hijacking Attack
	Threat Model

	Methodology
	General Attack Pipeline
	Naive Approach
	Neeko Using Quadratic Programming
	Neeko Using Disguiser
	Extension to the Neeko Using Disguiser

	Evaluation
	Evaluation Settings
	Neeko Using Quadratic Programming
	Neeko Using Disguiser
	Extension to the Neeko Using Disguiser
	Hyperparameters
	Summary

	Defenses
	Detection
	Denoising

	Discussion
	Transferability
	Fine-grained Manipulation of Hijacked GANs

	Related Works
	Testing Time Attacks
	Training Time Attacks

	Limitations
	Conclusion
	References
	Appendix

